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Models of polarizable continuous media are considered on the basis of a uni- 
versal variational equation [l]. The aim is to obtain a reasonably full infor- 
mation about the behavior of media in high-frequency electromagnetic field, 

with the use of simplest assumptions of a macroscopic character on energydis- 
sipation and on the form of thermodynamic functions. The proposed modeldif- 
fers from models in which the dependence of the polarization vector on the 
electric field is single-valued,first, in that besides reversible components of the 

polarization vector, their irreversible components on which free energy depends 

and whose variation is associated with energy dissipation are considered. Second, 
it differs by the presence of three-dimensional gradients and time derivatives 

of the polarization vector among the arguments of free energy. The introduc- 

tion of irreversible components of the polarization vector is similar to the tran- 

sition in the theory of elasticity to simplest models of viscoelastic media, The 
related complication can be readily overcome by introducing in the analysis 
a supplementary set of internal parameters, as was originally done by Biot 

in the case of viscoelasticity [a]. 

The construction of models is based on the variational equation of the form used in 
[l, 31, from which with allowance for the second law of thermodynamics and the use of 

traditional assumptions about parameters that define irreversibility, a closed system of 
equations is obtained in classical approximation. Conversion to averaged formulas which 
describe the interaction betwee: field and medium’is considered in the case of high-fre- 
quency electromagnetic field. 

Many publications dealing with the construction of models of continuous media with 

allowance for polarization and magnetization, among which [4 - 71 should be noted. are 
from the methodological point of view close to this paper. Gyromagnetic effects are ta- 

ken into consideration in [5, 61, while the case of ferromagnetic materials susceptible to 
magnetic hysteresis is investigated in [7]. Certain peculiarities of permittivity dispersion 
were not described in those papers. Since the dispersion occurs when the electric and 
magnetic fields alter at high frequency, hence their results must be extended in this case. 
Because electromagnetic waves at high field intensities are at present technically obtain- 
able,it is interesting to construct closed models that would define the interaction bet- 
ween a high-frequency field and a medium. 

1. The controlling parametera, We introduce in the three-dimensional 
Euclidean space the observer’s inertial coordinate system with coordinates xa and an ac- 
companying system with coordinates g a. Greek letter superscripts run everywhere through 
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the values 1, 2, 3, and t is the time in the observer’s system, To each point of the mo- 
ving medium is attached its own system of coordinates. Components of vectors of elec- 
trical intensity and magnetic induction fields are denoted, respectively, by E*u and B*9 
These vectors are determined in their own system of coordinates and then transferred to 
the observer’s coordinate system by conventional formulas for three-Amensional vector 

transformation. Components of these vectors, denoted in the observer’s inertial system 
by .!? and B” , are related to components E*” and B*” by the transformation formu- 

las derived in [4] which contain the velocity of medium. 
In the final results we shall retain only terms of order u / c, where u is the velocity 

of the medium and c is the speed of light in vacuum, however in the derivation of Eu- 

ler’s equations from the basic variational equation it is necessary to use relativistic trans- 

formation formulas with terms of order u2 / c2. In what follows the asterisk indicates that 

the related quantity is determined in the attached coordinate system. If the correspond- 
ing components are the same in the attached and the observer’s systems within the stipu- 
lated accuracy, the asterisk is omitted. The components A’, and Bx are expressed in 
terms of components of vector potential A, and the scalar potential by formulas 

E, = -Ya(P - c-‘dA, I at, II” = ~~97 V,A., 

where easy are components of completely antisymmetric Levi-Chivita pseudo-tensor. 
Various internal parameters, in particular those associated with the irreversibility of 

polarization and magnetization processes,may be introduced in the analysis to determine 
with a suitable selection of thermodynamic functions the highly complex character of 
relaxation of polarization and magnetization. Here it is assumed that there is only one such 

(vectoral) parameter x* with components =*I, which is associated with the irreversibi- 

lity of the polarization process. It is shown below that for some particular specification 
of free energy that parameter has the meaning of the vector of irreversible polarization 

of a unit of mass determined in the attached system of coordinates. 

We shall define the deformation process by the components of the deformation tensor 

E3?, in particular, the dependence of deformations may be determined in terms of den- 

sity f). We introduce the following notation: L+ for the components of the medium ve- 

locity vector, Kn for constants of physical and geometrical character which are assumed 

to be functions of only the attached coordinates, I’ for the absolute temperature, ,“c 

for the unit volume charge, and i, for components of the conductancecurrent. 

2, The vrrlrtionrl equation, In what follows, variations of the unknown 

quantities 21, A cL, , cc x*x and Y’* which are considered in constant concomitant co- 

ordinates $3 and at the characteristic time associated with each particle,are considered 
as independent, b&= c) by definition, and variations of remaining quantities are ex- 

pressed in terms of basic quantities in conformity with appropriate formulas. The corre- 

sponding procedure is presented in [l, 31, 
Construction of the model is based on the variational equation of the form 

61 Aa7&6W*+6W=O (2.1) 
VI 

where A is the combined Lagrangian of the electromagnetic field and medium, 6W* 
is some given functional, whose selection will be described below, 6w is a functional 
determinable on the three-dimensional boundary of the four-dimensional volume I’d by 
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the specified A and 6W* 
For the definition of the Lagrangian of the electromagnetic field and medium we use 

the formula 
h z.z & (E,E” - B,B”) $ p (K - F) 

where K = v* i 2 is the kinetic energy of the medium mass unit and F is the free 

energy of a unit of mass which for a particular model is specified as a function of the 

metric tensor components in the observer’s system g, a and of subsequent vector and ten- 

sor components and, also, of scalars K”” , B*a, &A Ebb V *a-t*6 d*n*a I dt, 
T* and Kn:with all these arguments determined in the attichId system of coordinates 

and transformed to the observer’s system. The symbols d* / dt and Vl denote differ- 
entiation with respect to time and the covariant differentiation with respect to the coor- 

dinate in the attached system, respectively. With such selection of arguments the free 
energy F of a unit of mass is evidently such, that it is invariant with respect to various 
inertial reference systems. 

It is shown below that the obtained equations are also invariant with respect to the Lo- 
rentz transformation within the specified here accuracy (within terms of order v / c). 

Assuming that the energy exchange between the field and medium is determined by the 
release of Joule heat and bv the polarization process, we specify the entropy balance as 

follows : d”S 
pT dt = d*x*J dQe t*@Vp*va + E,*i’” + Qg.* dt + 7 (2.2) 

where &’ is the entropy of a unit of mass, a*@ are components of viscous stresses, Q,* 
are components of the generalized force which determines the irreversibility of the po- 
larization process, and dv / dt is the rate of external heat influx, except the heat from 
the electromagnetic field, to a unit of the medium volume. All quantities appearing in 
this formula are determined in the attached coordinate system and transformed to that 

of the observer. If the heat influx dQ” is due only to the heat conduction process,dQe= 
--Ca*qsadt, and the formula for the internal growth of entropy in conformity with the 
basic assumption is of the form 

diS 
pT 7 = 

d*n*” V,*T ea 
~t*@‘V~*v, + E,*iaa + Qax 7 -74 (2.3) 

and the inequalities diS > 0 and diS > 0 hold, respectively, for all processes and 

for irreversible processes, respectively. 
In the case of continuous motion and in conformity with the second law of thermody- 

namics the functional 6W* is specified in the form 

6W’ = 5 (- pSGT” - z$Vs *6xa + F,Gxa - Q,*Gn*a f 
VI 

c-l j”S, A, - &‘P) dz, 

liLAa = 6A, + A,V,GxP, j” = ia t peva 

&cp = 6q - c-if4 ,dGxP i at 

where F,are components of the vector of volume forces. 

3. The 8)‘BtOm of 6qufktioIlB. In accordance with the assumptions made about 
the form of Lagrangian h and of functional- 6W* we obtain from the variational equa- 
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tion (2.1) the following system of equations: 

e@YVi,Hy = $_ 2g “r $ ja, V,DU = 4np, (3.1) 

s=_i!E. 
aT* ’ pa, = Vg*pa@ + Ra + Fa 

aF ___E_ 1 E 8Fi 

a(vp*n*a) dt a (d*da/dt) I 
where the first two equations represent the second pair of Maxwell equations (the first 

pair is the corollary of the assumption about the existence of scalar and vector potenti- 
als), the third equation determines the entropy, the fourth is the equation of momenta, 

and the last is an additional dynamical equation which links vector x* with theelectric 
field intensity and other parameters. The following notation is used: a, for components 

of the vector of medium acceleration, and for the components of stress tensor pap, vo- 

lume force R,, and also for vectors of electrical induction 136 and for the magnetic 

field intensity Hy we have 

Da = D- + eaSy,gHy*, H, = Hy* - smBv=Db@ 

In writing the system of equations the dimensionless parameters u2 / c2, p / pc2, H2 f 
pea and 0% / pc2 are, in accordance with the specified accuracy, taken as negligibly 

small in comparison with unity. The last two of formulas (3.2) show that the polariza- 

tion and magne~zation of the medium unit mass in the attached system of coordinates, 

whose components are, respectively, P,* and M,*, are defined by formulas 

p a * =r: -_p# j a~*=, iVf,* - -@F I aB*a 

If among the arguments of the free energy F the components of the vector of magne- 
tic induction B*a, are omitted, the magnetization in the attached coordinate system is 

always zero, while the inde~ndence of unction F from components of the v~tor of the 
electric field intensity E*” corresponds only to a magnetizable medium. 

The functional &win (2.1) is determined by formula 

‘W’ = \ r(P,BNb + Pa”N4) ha - (Sa@Nb + $a4N,) 62~ _ (3.3) 
. 
x:3 
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Pa6 = p! - pv,vB + Pf2 
aE a*iP 

a ( v,*3c*x) dt vpgYa + 

1 
mpavyva (D"BY-EE"HY) 

Pa* = - pva + c-*uppap +&(&Da $- E,D,) - 

aF 22 a (vB*fi*“) 
(vygasvy*n*” - vav8*n*“) + 

P afi- dWY 
c2 &4 = i!- 8 EBHY 

a ps5-c*“) ;dt $a) 4nc aSv 

Sap = -(4x)-i(E,Db + H,Bfi) + (8n)-i(EyDY + B,l+)G,P 

yaLp aF 
d (v~*rc*“) ’ 

\r,4 = p aF + -$VB aF 
8 (d*n*‘/dt) a (v~*rc*“) 

where do, is an element of the three-dimensional surface Es, and N, and x4 are 
the directional cosines of the four-dimensional normal to surface 2 s , which in the space 
a?, t = 9 is defined by the equation f (~a, t) = 0 , The cosines N, and N4 are de- 

termined by formulas 
N, = ‘J,f / I/V&‘/ + (a//at)2 

14 = (W / 8~) / &I@’ f + (at / dt)” 

Close to surface 2 s the inequalities f < 0 and f > 0 are valid, respectively, for 
internal and external points. 

The requirement for the symmetry of the spatial part of the field and medium energy- 
momentum tensor impose additional conditions on the form of function F . In the attached 
system of coordinates the components of that part of the tensor are ~*~a + paa. This 
condition was takeninto account in the derivation of formulas (3. 1) and (3.2). If that 
condition is omitted, it becomes necessary to consider the equation of moments which 

define the variation of internal moments of momentum for the medium [4], 

The equation of energy is obtained from the variational equation (2.1) after the sub- 
stitution of actual increments for variations of related parameters. Transformed to a dif- 
ferential equation of heat influx that equation in the absence of dependence of free ener- 
gy on derivatives of vector X* is of the form 

dlJ 
Pz= 

! 
p@ - -+ EV*P *yg@ Va”v$ f_ p d* 

L 

8E‘ d*@ 
dt a(d*x*“/dt) dt 1 + (3.4) 

r)L‘ d*@ 
a (vp*“*y dt 1 _ p * dEea -- a rlt 

which is the same as that presented in [4]. In this equation U = F f- .TS is the in- 
ternal energy of a unit of mass. 

The system is closed if, for instance, after the fixing of rheologicnl relationships that 
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link thermodynamic forces ~*“fi, E%*, Qa*, --q *CI / T2 with thermedynamic fluxes 

va*vp, i*a, c_P~*~ I dt and V,“T, and possibly with other parameters. 

4. Modal of an isotropic vircou8 comprerrible lfnearly-polarf- 
z ablr fluid. In what follows is assumed that below the components of the magnetic 
induction vector determined in the attached reference system do not contain among the 

arguments the free energy and, consequently, that the considered medium is only polari- 

zable but not magnetizable. We denote by 8’,, the free energy when all polarizations 
and their derivatives are zero. 

It is possible to represent the free energy of a unit of mass in the form 

F = F, + E, (ear,, E”, T, gap, K,, 3ta, dn” i dt, V,+P) 

where F, is independent of vectors and their derivatives which define the irreversible 

polarization, and also of the electric field tension, while F, = 0 when 0, EJ = 0, V rqa 

V& = 0, rr a = dna / dt = 0. Here and in what follows the asterisk at components de- 

termined in the attached system is everywhere omitted, since the related quantities de- 

termined in the observer’s system are no longer used. We shall represent the function in 
the linear theory by a homogeneous quadratic form in components of vectors iE and Jr, 

and in temporal and spatial derivatives of the latter. 
Since below we consider the case of an isotropic fluid, hence only &a and the scalar 

parameters p, T, Kg, and also ~4 na, n-u and Vg”’ remain among the argumentsof 

Fl which, then, assumes the form 

F, = ‘i, (x1n2 - oln*a n’p gap - X,E2) - 

x,E# + 02ia na + 03E,$ + 

I/, [Y~v~J-c~v~~~ + ~~~~d%pn~ + v3 (div 4*1 

(4.1) 

where all coefficients may be functions of density and temperature. 
In the linear theory we specify a linear dependence of thermodynamic forces on ther- 

modynamic fluxes. 
The assumption of the fluid isentropicity reduces the number of phenomenologicalco- 

efficients; it can be further reduced by using the Onsager symmetry relationships. From 
formulas which define corresponding relationships we obtain for components of the gene 

ralized force Q, an expression of the form 

Q, = p (hn’%ap + hi, + hV,T) 

where the coefficients h, ?L, and A2 are assumed to be known functions of Q and T. 
The equation of state for polarization, formulas that define parameter JC, t!le expres- 

sion for stress tensor components, and the equation of heat influx are in that case of the 

form 
P, = P (G, + xzn, - o,n’ag, a) (4.2) 

%-KC = Xl% + (oa + h)n’fig,p - 

$( ozn, + o&a. - o,n’~g, a) - p-‘V&-j 

pap = -(pO + p2aF, I dp)G,P + il,E,P~G,fi- YW,n, 
pdU, I dt = -pod (1 I p) I dt + ~3’ Bva + 

pQansa + E,i” + pTd (8F, I 6’T) I dt 
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PO = p28Fo I ap, cio = F, - Ti3Fo / i3T 

Yap -y P (YV@G + v,V,J+ + vg div J&P) 

where the derivatives of function F, with respect to f) and T have not been expanded 
in order not to encumber the formula. The system of equations must be supplemented 
by the equation of continuity of mass, which was taken into consideration in the varia- 

tion of density in Eq. (2.1). When CTS = 0 and 3c2 == 1 , the parameter n represents 

the irreversible component of the polarization vector. However, if 3~~ + 0, it is always 
possible to substitute the new independent parameter n’ = lc2fi for z Znci reduce coeffi- 
cient xt to unity. 

6. Averaged formulae for linearly polarfzable fluid in thz cow 
of a high-frequency nearly monochromatic field, To avoid complica- 
ting the analysis by secondary effect it is assumed below that volume charge and con- 
duction currents are absent. We consider the case of a high-frequency field, which means 

that at’ > 1, where o is the field frequency and t’ is the characteristic time of the 

problem. We select a linear model and restrict the investigation to the case of fluidcon- 

sidered in Sect. 4 l We also assume that the generalized force Qa is independent of 

the temperature gradient (h, = 0). In that case it is possible, as shown by formulas 
(3.1) and (4.2), to seek solutions for which the electric field intensity is of the form 
ELX _ Ro [E,a (~9, ++“‘],where i = r/-zT, and Eoa is, generally speaking, a com- 
plex function which slowly varies in time. All other electromagnetic parameters B”, 
na, Da and P” are similarly defined. Functions which slowly vary with time are de- 
noted by a zero subscript. 

From Eqs. (4.2) we have the following relationships: 

P OCX = P [x,E’o, + (~2 + 

x2Eoa = (x, - hiw - cf102)nOa + o,ioE,, - 

The derived formuals are based onthepremise that derivatives of slowly changing 
quantities can be neglected because of their smallness in comparison with derivatives 

of quantities varying at high frequencies. They may be, however, neglected only when 

the first term in the right-hand side of the second of equalities (5.1) is considerably 

smaller than the rejected term which contains derivatives of noa with respect to time. 
The constraint on the frequency necessary for eliminating frequencies Close to resonance 

is readily formulated. When condition (dn, / dt) / no < ) x1 / h 1, A2 > Julxl~ x 
(2’2 + 1) is satisfied, the required inequality holds for any frequency o. If that condi- 
tion is not satisfied, terms containing derivatives of J!?, with respect to time appear in 
subsequent formulas. 

Formulas (5. l), as well as Maxwell equations which in the considered case canbesim- 
plified by the known procedure [S], must be supplemented by thermomechanical equations 
in which all rapidly oscillating electromagnetic quantities varying at frequency 20 are 
replaced by their time averages which will be denoted by angle brackets. It is assumed 
that the averaging interval is sufficiently wide to contain many oscillations of the elec- 
tromagnetic quantities and, yet, reasonably small so that thermomechanical quantities 
and the complex amplitudes of electromagnetic quantities denoted by zero subscript 
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remain virtually constant. Thus, for instance, for the mean square value of intensity we 
have the formula <Es) = EOaEOa / 2 (the stroke above a symbol denotes a complex 
conjugate quantity). 

In the remaining part of this Section we assume the independence of free energy of 
spatial polarization gradients, and set coefficients os and CT, equal zero. In that case we 

have the formulas 

PO, = p 1x0 + X22 / (Xi - hio - o,02)lEaa 
(5.2) 

Doa = aEoa, e = 1+4np [x, + x22 i (x1 - k0 - %~2)l 

where E is the permittivity of the medium. Formulas (5.2) are known as the simplest 
for defining the dependence of permittivity on frequency. 

The object of the described constraints is the derivation of averaged relationshipswhich 
correspond to the known simplest dependence of polarization on the electric field inten- 
sity (5.2), while their omission would result in very cumbersome formulas. It should be 
noted that the admission of a considerable number of independent internal parameters 

makes it possible to obtain linearly-polarizable media with a diverse dependence ofper- 
mittivity on frequency. For this it is sufficient to specify, as in [2], for the free energy a 
dependence of quadratic form on the field intensity, internal parameters and their deri- 
vatives with respect to time, and have the generalized forces which define the irreversi- 

bility of the polarization process represented by linear functions of derivatives of inter- 

nal parameters with respect to time. 
In the particular case considered here the formulas that define the averaged valuesof 

components of the total stress tensor in the medium and the dissipation due to the pola- 

rization process irreversibility are of the form 

(p,B) = - p2 a$ + (&fJ) + & [ !$ + ;;o-;m ;. a @oa; ecJ A- (5.3) 
00 

o2 1 E - 6, I2 + (+$-)I W) 6,’ 

(0) = (Qara) = oIm~(E~)/h 

where z. and adO are values of permittivity when 0 is equal zero or infinity, respectively. 

The equations of heat influx assume the form 

duo d(l IP) 
Qj-=-podtt (Pfi) Vp, + $ Im E (E2> - 

PT d -- {‘[~+~z~E--~~a&(~)+ 8n dt p 
1 e - 8,-12 a (eO - em) 

(e, - e,)2 ai' I I W2> 

(5.4) 

The second of formulas (5.3) is valid in the linear theory for very general assumptions 
and is widely known (see, e. g., [S]). The first of formulas (5.3) and formula (5.4) are 

of a less generalcharacter,since they are related to specific assumptions on the form of free 
energy and on closing rheological relationships. In the absence of irreversibility which 

is associated with the polarization process, the expression for stress tensor componentscan 
be reduced to the formula obtained in [9] with (5.2) taken into account. 

The formula for components of the time averaged volume force <R,> is of the form 
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(5.5) 

0. Averaged relatfonrhipr that define the interaction batween 
the field and medium in the geometrical optic, approximation, 
Since we have in mind the case of propagation in the medium of a nearly monochroma- 

tic light wave, we shall assume that the inequality WI, / c > 1, where L is a charac- 
teristic linear dimension of the problem,is satisfied besides the inequality ot’ > 1 , 
As previously, we assume that the coefficient AZ is zero, and seek the electric fielu in- 
tensity in the form 

6,:’ (21, t) = EO,~~ (Z”, t) exp Li (0 / c) j (XX, t)l (6.1) 

where, generally speaking, the complex functions E ,,P and 5 slowly vary in time and 
with respect to coordinates. All remaining electromagnetic quantities are represented 
by similar formulas, with the related complex amplitudes denoted by double-zero sub- 

scripts. 
The substitution of formula (6.1) and of similar formulas for other electromagnetic 

quantities into (5.1) yields the following equations : 

E ooa = AagnooP, Dooa = crmPEoop (6. Z) 

A 0.P = x1-‘{ Ix, - hiw - CT102 + VI (0 / c)” O,~V~51 g,fi -I- 

b2 + 4 (0 i c)2V, wag) 

(for simplicity it is assumed here, as in Sect. 5, that CT? = 0s = 0) 
Although the meaning of o @=p [(I + 4nx,)g@ + ~wc~A-~~@], whereA-laflApy= 

6” Y, is that of the medium tensor permittivity,it also links the complex amplitudes de- 

noted in (6.2) by double-zero subscripts. Note that optical anisotropy may appear owing 
to the nonzero coefficient v2 f ~a also in the case of the model of fluid which is iso- 
tropic and linear with respect to polarization, when the dependence on the polarization 
gradient is taken into account. In the derivation of formulas (6.2) the derivatives of 
slow varying quantities taken with respect to coordinates were neglected because of their 
smallness as compared with thoseaf quantities that vary rapidly with respect to coordi- 

nates. 
The substitution of formula (6.1) and of the similar formula for the magnetic field 

intensity into Maxwell equations yield in accordance with the method of geometrical 
optics [lo] the following asymptotic formulas in terms of the large parameter OL / C: 
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The first of these is the equation for determining function 5 (~9, 2), and the remaining 
make possible to determine the quantities E,, and He@.,. In the general case, when the 

dependence on coordinates and time is expressed in terms of known thermomechanical 

parameters, Eqs. (6.3) link with other equations and replace Maxwell equations. Further 
simplification is achieved by averaging thermomechanical variables over three-dimen- 
sional volumes that are small in comparison with L but contain many wavelengths(the 

wavelength order of magnitude is c I w < L). 
Owing to the cumbersomeness of the complete system of equations it is not presented 

here, and only the case in which the free energy is independent of gradients of vector JI 
is considered, Formulas (5.2) - (5.4) remain valid, if the subscript 00 is substituted for 

0 and the mean square of intensity is taken as its mean with respect to time andvolume, 

which is calculated by formula 

After averaging over the volume and estimating the order of its terms, formula (5.5) is 
further simplified and reduced to the form 

<Re> z (f+r)-’ I- <Es> V, (Re e) + 

2 (@ /’ c) Im e <E*> V, (Re Ql 

7. On the derctiption <of the Kerr effect, The model considered here 
also admits a nonquadratic dependence of free energy on the field intensity and other 
electrodynamic parameters. In particular, it is possible to describe the electro-optical 
Kerr effect with the use of function F that is nonquadratic with respect to E” Forthis 
it is necessary to consider a solution of the form E, = El, + EoaZiWf, where E,, and 
E,, are slowly varying functions of time. Let the free ener<;b I?e defined ) F = Fe + 

F, pa, p, T, gap), where F o is independent of variables of the electromagnetic charac- 

ter, Q, = 0, and F, is defined by the expression F, = -(a,E2 / .’ + a,E4 / 4) on the 
assumption of fluid isotropicity. Then, if the high- frequeilcy’field intensity component 
E, is considerably lower than the slow varying component E,, it is possible to restrict 
the expansion of vector D in components of vector E, to its zero and first terms. We 

have D, zz D,, + Do&-iW’t 

D,, := (Eg -+ 4Wz,pE,*)E,,, u,, - a,pEoi’ 

Eg = 1 + 4na,p, c,p = (eO + 4no,pE,*)g,~ + S%pE&t+ 

The last term of the formula for permittivity defines the Kerr effect [Sl. 
The author thanks L. I. Sedov for guidance and A. G. Tsypkin for valuable remarks. 
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